0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 551 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 145 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 190 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 21 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^1)
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
revapp(Nil, rest) → rest
goal(xs, ys) → revapp(xs, ys)
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest)) [1]
revapp(Nil, rest) → rest [1]
goal(xs, ys) → revapp(xs, ys) [1]
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest)) [1]
revapp(Nil, rest) → rest [1]
goal(xs, ys) → revapp(xs, ys) [1]
revapp :: Cons:Nil → Cons:Nil → Cons:Nil Cons :: a → Cons:Nil → Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil → Cons:Nil → Cons:Nil |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
revapp
goal
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Nil => 0
const => 0
goal(z, z') -{ 1 }→ revapp(xs, ys) :|: xs >= 0, z = xs, z' = ys, ys >= 0
revapp(z, z') -{ 1 }→ rest :|: z' = rest, rest >= 0, z = 0
revapp(z, z') -{ 1 }→ revapp(xs, 1 + x + rest) :|: z = 1 + x + xs, xs >= 0, z' = rest, x >= 0, rest >= 0
goal(z, z') -{ 1 }→ revapp(z, z') :|: z >= 0, z' >= 0
revapp(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
revapp(z, z') -{ 1 }→ revapp(xs, 1 + x + z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
{ revapp } { goal } |
goal(z, z') -{ 1 }→ revapp(z, z') :|: z >= 0, z' >= 0
revapp(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
revapp(z, z') -{ 1 }→ revapp(xs, 1 + x + z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
goal(z, z') -{ 1 }→ revapp(z, z') :|: z >= 0, z' >= 0
revapp(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
revapp(z, z') -{ 1 }→ revapp(xs, 1 + x + z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
revapp: runtime: ?, size: O(n1) [z + z'] |
goal(z, z') -{ 1 }→ revapp(z, z') :|: z >= 0, z' >= 0
revapp(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
revapp(z, z') -{ 1 }→ revapp(xs, 1 + x + z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
revapp: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
goal(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z', z >= 0, z' >= 0
revapp(z, z') -{ 2 + xs }→ s :|: s >= 0, s <= 1 * xs + 1 * (1 + x + z'), z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
revapp(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
revapp: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
goal(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z', z >= 0, z' >= 0
revapp(z, z') -{ 2 + xs }→ s :|: s >= 0, s <= 1 * xs + 1 * (1 + x + z'), z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
revapp(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
revapp: runtime: O(n1) [1 + z], size: O(n1) [z + z'] goal: runtime: ?, size: O(n1) [z + z'] |
goal(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z', z >= 0, z' >= 0
revapp(z, z') -{ 2 + xs }→ s :|: s >= 0, s <= 1 * xs + 1 * (1 + x + z'), z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
revapp(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
revapp: runtime: O(n1) [1 + z], size: O(n1) [z + z'] goal: runtime: O(n1) [2 + z], size: O(n1) [z + z'] |